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A PRIORI BOUNDS FOR POSITIVE SOLUTIONS OF SUBCRITICAL ELLIP TIC
EQUATIONS

ALFONSO CASTRO, ROSA PARDO

ABSTRACT. We provide a-priori.> bounds for positive solutions to a class of subcriticapéildi
problems in bounded? domains. Our arguments rely on the moving planes methodeapph

the Kelvin transform of solutions. We prove that locally theage through the inversion map
of a neighborhood of the boundary contains a convex neididwmat; applying the moving planes
method, we prove that the transformed functions have n@&mel point in a neighborhood of
the boundary of the inverted domain. Retrieving the origgwution u, the maximum of any
positive solution in the domaif, is bounded above by a constant multiplied by the maximum
on an open subset strongly containedinThe constant and the open subset depend only on
geometric properties d, and are independent of the non-linearity and on the solutio®ur
analysis answers a longstanding open problem.

1. INTRODUCTION

We provide a-prioriL>°(€2) bounds for a classical positive solutions to the boundaityes
problem:
—Au = f(u), in €,
(1.1) { u = 0, onofl,
whereQQ ¢ RY, N > 2, is a bounded”? domain, andf is a subcritical nonlinearity. For
simplicity we assumeév > 2, but our techniques fits well to the cade= 2. Our main result is:

Theorem 1.1. Assume thaf? ¢ RY is a bounded domain witb”?> boundary. Assume that the
nonlinearity f is locally Lipschitzian and satisfies the following conalits

(H1) f(s) is nonincreasing for any > 0, where N* = ¥+2

SN* N-2"
(H2) f is subcritical, i.e.lim fg\i) =0,
s—o0 S
(H3) lim inf @ > \;, where), is the first eigenvalue of A acting onH}(12).
S—00

Then there exists a uniform constarntdepending only of2 and f, such that for every, > 0,
classical solution tq1.1),
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2 A. CASTRO, R. PARDO

Theoreml.1l answers a longstanding open problem, raised for instang#HIoN82) as well
as in [GS81. Our analysis substantially extends previous result$§dFLN82 the nonlinearity
f is assumed to satisfy

limsup(sf(s) — 0F(s))/(s*fN?(s)) <0 forsome 6 € [0,2N/(N —2)),

s—400
whereF(s) = fot f(s)ds. The results inGS87] depend heavily on thblow upmethod which
requiresf to be essentially of the fornf = f(z,s) = h(x)s? with p € (1, N*) and h(z)
continuous and strictly positive. Functions suchfgs) = sV /(In(s+2) satisfy our hypotheses
but not those ofdFLN82 neither of [GS81.

Next we provide an example of a nonlinearifythat satisfies our hypotheses but not those
of [GS8]. Letl < p < ¢ < N*. Leta; be any real number larger than 1. Inductively we
defineb; = ag.N*_”)/(N*_q), anda;;, = bj-/”. Thusa; < b; < a;q and{qa,;}, {b,;} are increasing
sequences converging teco. We definef(s) = s” for s € [0,a4]. Inductively, we definef
on[a;, b;] U [bj, ;4] for j = 1,2,...in the following way: f(s) = sV /a}" 7 for s € [a;, b;]
and f(s) = f(b;) for s € [bj,a;1]. Itis easily seen that? < f(s) < s?forall s > 1.
Hencef satisfies (H2) and (H3). Sincgis a multiple ofs™" on [a;, b;], f(s)/s"" is constant
in that interval. On the the other hand,in, a;.+], f is constant. Hence, ifb;, a;.1], f(s)/s"
decreases. Thus hypothesis (H1) is satisfied. Sfitag) = o} and f(b;) = b, there is no
a € (1, N*) such thafim,_, , . f(s)/s* € R. Thusf does not satisfy the hypotheses of Gidas-
Spruck (see®S81 Theorem 1.1]).

Our proof of the Theorerh.1usesnoving plane argumentas in dFLN82, as well aKelvin
transform For the sake of completeness in the presentation, belowefieedthe Kelvin trans-
form, and in section 2 we recall results on moving plane anisito be applied in section 3 in
the proof of Theorem..1.

Applying the Kelvin transform to positive solutions df.{), the moving planes method deter-
mines regions where the transformed function has no drjtimiat. Recovering then the solution
u, one sees that its maximum in the entire donfains bounded above by a constanmulti-
plied by the maximum of the same solution on an open substtongly contained if2. The
constant”' and the open subset CC 2, depend only on geometric propertiestofand they
are independent of andu, see Theorem2.8. This Theorem is a compactification process of a
local version given earlier in Theorein?.

The moving planes method was used earlier by Serrirsar{]. For second order elliptic
equations with spherical symmetry satisfying over-deteeah boundary conditions, he proved
that positive solutions exists only when the domain is a dadl the solution is spherically sym-
metric. The proof is based on Maximum Principle and the mgylanes method, which basi-
cally moves plains to a critical position, and then show thatsolution is symmetric about this
limiting plane.

Gidas-Ni and Nirenberg inGNN79, using this moving planes method and the Hopf Lemma,

prove symmetry of positive solutions of elliptic equatioranishing on the boundary. See also
Castro-Shivaji CS89, where symmetry of nonnegative solutions is establisleed {0) < 0.
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In [GNN79 the authors also characterized regions insid€ pohext to the convex part of the
boundary, where a positive solution cannot have criticahigo Those regions depend only on
the local convexity of2, and are independent gfand . This non-existence of critical points
in a whole region, is due to a strict monotonicity propertyanf positive solution in the normal
direction. This is a key point to reach our results.

Gidas, Ni and Nirenberg in their classical paper pose thevahg problem 33 years ago
which to the knowledge of the authors, is still open, S8BN79, p. 223].

Problem: Suppose > 0 is a classical solution of1.1). Is there some > 0 only dependent
on the geometry of? (independent off and u) such thatu has no stationary points in a-
neighborhood 0bf)?

This is true in convex domains, and fof = 2, see GNN79, Corollary 3 and p. 223]. The
question is now what about non-convex domains with- 2.

Our contribution is the following one: there are sofieandy > 0 depending only on the
geometry of) (independent of andw) such that
(1.2) maxu < C' maxu

Q Qs

whereQ)s := {z € Q : d(z,00Q) > ¢}, see Theorerd.8.

To reach our answer in this situation, let us start by defitiregKelvin transform, seedT83
proof of theorem 4.13, p. 66-67].
Let us recall that everg? domain) satisfy the following condition, known as thmiform
exterior sphere conditign
(P) there exists a > 0 such that for every: € 992 there exists a balb = B,(y) C RV \
such thabB N o) = x.

Let o € 09, and letB be the closure of a ball intersectig only at the pointz,. Let

us suppose, = (1,0,---,0), and B is the unit ball with center at the origin. Thieversion
mapping
X

is an homeomorphism frof”" \ {0} into itself. We perform an inversion frof into the unit
ball B, in terms of the inversion map|, , see fig.1 (a).
Letu solve (L.1). TheKelvin transfornof « at the pointzy € 0€ is defined in the transformed
domainQ := () by
1\ N2 y _
(1.4) v(y) = <|y|> u <|y|2> , for ye Q.
We first prove that, for each poiny € 0f2, there exists somé > 0 depending only on the

geometry of?, (independent of andw), such that its Kelvin transform has no stationary point
in Bs(z) N h(S2), see Theorerd.6.

Retrieving the solution of (1.1) we obtain that

maxu < C max u
Q Q\By (wo)
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(a) (b) ()

FIGURE 1. (a) The exterior tangent ball and the inversion of the llauy into
the u~nit ball. (b) A maximal cap in the transfor~med domaih((2). (c) The set
h=1(X) (i.e. the inverse image of the maximal capin the original domairn>.

whereC only depends of and it is independent of andu, see Theorerd.7.
Next, we mover, € Jf2 obtaining (L.2), see Theorerd.8

This paper is organized in the following way. In Sectidmve describe the moving planes
method, and its consequences when applied to the Kelviaftran of the solution. In particular
Theorem2.6, Theorem?2.7, and Theoren2.8are included in this section. In Secti@we prove
our main results on a-priori bounds, see Theofiein We include an Appendix with geometrical
results on the local convexity of the inverted image of thendm, see Lemma.1.

2. THE MOVING PLANES METHOD AND THEKELVIN TRANSFORM

We first collect some well known results on the moving planethod: Theoren®.1 and
Theorem2.4. Next, we state our main results in this section: Theofe@ Theorem2.7, and
Theorem2.8.

We next expose the moving planes method. We will be movinggsan thez,-direction to
fix ideas. Let us first define some concepts and notations.

- Themoving planes defined in the following way7), := {z € RY : 2; = \},
-thecap Xy :={z=(21,7) e RxR¥I1NQ : x; < A},

- thereflected point  2* := (2\ — 2y, 2),

- thereflected cap ¥, := {2} : z € £,}, see fig.2(a).

- the minimum value fon or starting value: )\ := min{z; : = € Q},

- the maximum value fok: ~ \* := max{\ : ¥} C Q forall <A},

- themaximal cap X := Xy..

The following Theorem is Theorem 2.1 iIGNN79.



S(—e1)

(a) (b) ()

FIGURE 2. (a) A capX, and its reflected cap/, in the e, direction. (b) A cap
Y(—ep) and its reflected cap’, (—e;) (in the —e; direction). (c) A maximal cap
Z(—61).

Theorem 2.1. Assume thaf is locally Lipschitz, thaf? is bounded and thaf}, 2, Ao, \*, 3
¥\, andX are as above. Ifi € C*(Q) satisfieg1.1) andu > 0 in ©, then for any\ € (\g, \*)

0
uz) <u(@) and S—(z)>0 forall =€,
81’1
Furthermore, if %(x) = 0 at some point irf2 N Ty«, then necessarily. is symmetric in the
planeT)., and = X U X' U (Th» N Q).

Proof. See [GNN79 Theorem 2.1 and Remark 1, p.219] forc C* and locally Lipschitzian
respectively. O

Remark 2.2. Setz, € 02 N T),, see fig.2(a). Let us observe that by definition &f, 7}, is the
tangent plane to the graph of the boundary@atand the inward normal aty, is n;(xy) = e;.
The above Theorem says that the partial derivative follgviire direction given by the inward
normal at the tangency point is strictly positive in the wholaximal cap. Consequenttiere
are no critical points in the maximal cap.

Now, we apply the above Theorem in any direction. Accordmghe above Theorem, any
positive solution of {.1) satisfying (H1) has no stationary point in any maximal capving
planes in any direction. This is the statement of the foltayCorollary. First, let us fix the
notation for a generat € RY with |v| = 1. We set

themoving planedefined as: T\(v) = {r e RY : z-v = \},

thecap X,\(v)={z€Q : z-v <A},

thereflected point 22 (v) =z +2(\ — z - v)v,

thereflected cap )\ (v) = {2} : 2z € £\(v)}, see fig.2(b), forv = —e;,
the minimum value of:  A\o(v) = min{z - v : z € O},

the maximum value ok:  \*(v) = max{\ : ¥ (v) C Q forall u < A},
and themaximal cap X (v) = Xy (,)(v), see fig.2(c), forv = —e;.
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Finally, let us also define thaptimal cap set

(2.1) Ox = U X(v).

{verN |v|=1}

Applying Theoren?2.1in any direction, we can assert that there are not criticaitpon the
union of all the maximal caps following any direction. The €& is the union of the maximal
caps in any direction, and in particular, the maximum of aitp@ssolution is attained in the
complement of2*. Thus we have:

Corollary 2.3. Assume thaif is locally Lipschitzian, that is bounded, and tha®* is the
optimal cap set defined as above.
If u € C?(Q) satisfieq1.1) andu > 0in 2 then

max u = max u.
Q O\*

If Q* is a full boundary neighborhood @f2 in 2, as it happens in convex domains, then
there ise > 0 depending only on the geometry Qf (independent off and«) such that: has
no stationary points in a-neighborhood ob<). Next we study the case in whidh* is not a
neighborhood 02 in €.

We prove that the maximum afin the whole domaint2 can be bounded above by a constant
multiplied by the maximum of; in some open set strongly contained(in see Theoren2.8
below.

To achieve this result, we will need the moving plane metlavdifnonlinearityf = f(x, u).
Next we study this method on nonlinear equations in a morergésetting. Let us consider the
nonlinear equation

(2.2) F (x,u, Vu, (aizju)i,jzl,---,N> =0,

whereF : Q x R x RV x RNV is a real functionf' = F(z,s,p,r) andd?u = z2% . The
1OLj
operatorF’ is assumed to be elliptic, i.e. for positive constants M

MIEP > a
2%

0
or
On the function”” we will assume

(F1) Fis continuous and differentiable with respect to the vdeskb. p;, r; ;, for all values of
its argumentsgxz, s, p,r) € Q x R x RY x RV*V,
(F2) Forallx € 9Q N {zy < A*}, F(2,0,0,0) satisfies either

F(2,0,0,0)>0 or F(z,0,0,0) <O0.

&& > mlE)?, V¢ € RY.

]

(F3) F satisfies
F (x)\vsv(_plvp,)vlf’) Z F(..'lf, S, D, T)v
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forall X € [\o, \*), z € () and(s,p,7) € R x RY x R¥*¥ with s > 0 andp; < 0,

wherep = (p1,p)) € R x RN-1 ¢ = ,andr) = (ry, -+ ,min), fOr
i=1,---,N.
The following theorem is Theorem 2.1 iIGNN79.

Theorem 2.4. Assume tha® is bounded and thdf), 2%, Ao, \*, ¥, ¥}, and X are as above.
Let I satisfies conditionf~1), (F2) and (F3).
If u € C*(Q) satisfieg2.2) andu > 0in ©, then for any\ € (Ao, \*)

u(z) <u(x*)  and gi(:c) >0 forall zeX,.
Zy

Furthermore, if %“71(@ = 0 at some point i2 N Ty«, then necessarily, is symmetric in the
planeT)., andQ = X U X U (T~ N Q).

As an immediate Corollary in the semilinear situation weehtne following one.

Corollary 2.5. Suppose: € C?(Q) is a positive solution of
(2.3) — Au = f(x,u), in€Q, u=0, onod.

Assumef = f(z, s) and its first derivativef, are continuous, fofz, s) € Q x R.
Assume that

(2.4) flz*,s) > f(z,s)  forall ze&X(\Y), forall s> 0.

Then for any\ € (Ao, \*)

0
u(z) < u(z) and ai(x) >0 forall z € X,.
Ty
Furthermore, if %‘Tl(x) = 0 at some point irf2 N Ty«, then necessarily. is symmetric in the

planeT., and = X U X U (Th» N Q).

Next, we state the first of our main results in this sectionnfjxregions where the Kelvin
transform of the solution has no critical points. This is stetement of the following Theorem.
Let us fix some notation. For any, € 0%, letn;(z,) be the inward normal at, in the trans-
formed domairf2 = A(Q), whereh is defined in {.3), and let® = %(7i;(x,)) be its maximal
cap, see figl(b).

Theorem 2.6. Assume thaf ¢ R" is a bounded domain witt? boundary. Assume that the
nonlinearity f satisfieqH1) and(H2).

If u € C?(Q) satisfie(1.1) andu > 0 in €, then for anyz, € 99 its maximal cap in the
transformed domaii is nonempty, and its Kelvin transformdefined by(2.7), has no critical
point in the maximal caﬁ.

Consequently, for any, € 052, there exists @ > 0 only dependent d? andz,, and indepen-
dent of f andu such that its Kelvin transform has no critical point in the seB;(zo) N A(£2).
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Proof. Since( is aC? domain, it satisfies a uniform exterior sphere condition (&} z, € 012,
and letB be the closure of a ball intersectifigonly at the pointz,. For convenience, by scaling,
translating and rotating the axes, we may assumerhat (1,0,---,0), and B is the unit ball
with center at the origin.

We perform an inversion from 2 into the unit ball B, by using the inversion map —

h(z) = ;- Due toBNQ = {70}, and to the boundedness(@;‘there exists som& > 0, such
that
(2.5) 1<]z| <R forany z € Q,

and the image
(2.6) flzh(Q):{y:h(x)ERN:x:&EQ}CB\Bl/R.

Note that0 ¢ h(2), see fig. 1(a). Moreover is strictly convex near, and the maximal cap

5. = X(n,()) contains a full neighborhood af, in ©, wherefi, () is the normal inward at,
see lemmal.1 in the Appendix, see also fig(b). Observe that, by construction(z,) = —e;.

Next, we consider the Kelvin transform of the solution dedibg (1.4). The functiorw is well
defined om(£2), and writingr = |z|,w = 127 @andA,, for the Laplace-Beltrami operator @iB; ,

the functionv satisfies
Av(r,w) = [ ! 3<7°Nla>—i- — A,

v(r,w)
rN=19p

g
- )] () s

1 0 0 1
= [N- 13rTN 18r [<;> u(,w)

Ur + —

1 [(N—2)
2

B N-1 N

= oNgo Ut 1/r u”’l/rz Wt = TNT2

Thereforev > 0 in ) satisfies

1 _ Lo~ ~
(2.7) —Av(y) = S F(yNPo(y)), inQ, v=0, ono.

From hypothesis (H2), we see that the functigp, s) = Wf (ly|V—2s) satisfies the hy-

pothesis of Corollar.5. By construction, it is straightforward that}| < |y| for all y € 3, see
fig. 1 (a) and (b), and remain that the origin is at the center of glefh By (H2),

(2.8) gt s) > gly.s)  forall ye¥,
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whereX. is the maximal cap in the transformed domain, seelfigp). Therefore, the hypotheses
of Corollary 2.5 are fulfilled, and hence has no critical point in the maximal cap, which
completes the proof choosiagsuch thatB;(zo) N A(2) C X. O

We are now ready to state our main result in this section. Tésslt is composed of two
theorems, the first one, Theoréh¥ below is the local version in a neighborhood of a boundary
point, the second one, Theoréh8is the global version.

Theorem 2.7. Assume thaf) ¢ RV is a bounded domain witt? boundary. Assume that the
nonlinearity f satisfieqH1) and (H2). If u € C?*(Q) satisfieq1.1) andu > 0 in ©, then for any
xo € 0f) there exists & > 0 only dependent d? andz,, and independent of andu such that

(2.9) maxu < C max u.
Q Q\Bs(z0)

The constan€’ depends o2 but not onz, f or u.

Proof. Let z, € 99, if there exists & > 0 such thatB;(xo) N Q C Q*, (as it happens in convex
sets), the proof follows from Theoreth6. We concentrate our attention in the complementary
set.

Letz, € 99, and letB be the closure of a ball intersectifigonly at the pointz,. Let v be
as defined in1.4) for y € Q = h(Q2). By a direct application of Theore 6, v has no critical
point in the maximal cap:, and therefore

(2.10) max v(y) = maxv(y).
Q oS

From definition ofv, see (L.4), we obtain that

max |z|¥ ?u(z) = max |z[Y2u(z),
Q Q\R1(D)

Whereh‘l(i) is the inverse image of the maximal cap, se€lfig)-(c). Due to the boundedness
of 2, see R.5), we deduce
maxu(z) < RN™? max  u(z),
Q Q\L-1(E)

which concludes the proof choosigy= RY~2 ands such thatBs(z,) C h~(2) and therefore

Q\ A 1(X) € Q\ Bs(xo). O
The following Theorem is just a compactification processhefabove result.

Theorem 2.8. Assume thaf) ¢ RV is a bounded domain witt? boundary. Assume that the
nonlinearity f satisfiegH1) and (H2). If u € C*(Q)) satisfieq1.1) andu > 0 in €2, then there
exists two constants and depending only of2 and not onf or » such that

(2.11) maxu < (C maxu

Qs

whereQs .= {x € Q : d(z,00) > d}.
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Proof. Since(2 is aC? domain, it satisfies a uniform exterior sphere condition {Rjanks to that
property, we can choose a constant= (R/p)¥ 2 satisfying the above inequality.

Moreover, let us note that from Theore@$ and2.7, the constant only depends on geomet-
ric properties of the domaif. 0J

3. PROOF OFTHEOREM 1.1

Proof of Theoreni.1 We shall argue by contradiction. Lét,}, be a sequence of classical
positive solutions toX.1) and assume that

(3.1) lim ([ug|oc = +o0.
k—o0

LetC, 6 > 0 be as in Theorer.8. Letz;, € Qs be such that

ug () = max uy.
Qs

Since0 < é < ur(@e) < by taking a subsequence if needed, we may assumgrthat. i (k)

= lurlls lluklloo

L > 0 and there exists, € Q5 such thatim,_,., z;, = z¢ € .

As observed inTur74, Nus75 BT77], [dFLN82 p. 44], there exists a constarit > 0 such
that

/Uk¢1 < /f(uk)¢1 <.
Q Q

Letd, = dist(zy,002) > 6 > 0, and letB, = B(x, p) for p € (0,6). Since

33012 b /Bdo/2 flug) < /Bdo/2 flup)or < /Qf(uk)cbb

there exists a constaat, independent ok such that

By /2 Bay 2

Let us now define

(3.3) wi(x) = w(®) o seq
[
hencewy,(z;) > & > 0 forall k, and
Note also that
—Awg(z) = ! Aug(x) ! f(u(x)) forall z €.

k]| oo  flunll
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Let us fixg € (1,%F2) , for N > 3. We observe thal*(1 — 1/¢) < 1. Taking into account
hypothesis (H2) orf, (3.2), and @3.1) we deduce

1/q 1/q
1 ! = ! ur (@) f (g (@
il (Ldo/z‘f “”““’”) =l (/Bdo/jﬂ (@) [7 | (und >)}>

(3.5) < O)ug |0Vt 50 as k — oo.

From interior elliptic regularity results, seADN59, ADN64], we can write

(3.6) lwelwzas,y o < € (Il O 4 fan oz, ) ) < C.
From compact Sobolev imbeddings, at least for a subsequence
(3.7) w,—w as k—oo, in WH"(By)

Due tow;, > 0 thenw > 0 in By,,,. Moreover, eitherde LW > 0 or de L= 0. As-
0 0
sume thathd L= C > 0. From 3.7) and compact imbeddings, we obtqud L, Wk =
0 0
C . - - o
de0/4w, ask — oo, thereforedeo/4 wy > & for any k big enough. By deflnltlordeO/4 wy =
1 C . .
o deO/4 U, thereforedeO/4 up, > €||ugl|oc — 00, ask — oo, which contradictsg.2). Con-
sequentlnyd Lw= 0, and thereforede L Wk = 0, ask — oo. By definition ofw;, see 8.3),
0 0

|wg|| L= < 1, which implies

-1
0 §/ wy, < !\wk!\%w(3d0/4)/ Wy, S/ w, =0 as k— oo,
Bd0/4 Bd0/4 Bd0/4

therefore |wy|| La(5,,,,) — 0. Plugging this in 8.6), we deducejwy|lwza(s,, ) — 0 ask — oco.
Due to 8.7), in particular||Vw|[ a5, ) = 0, and from Holders inequalityVw|| 115, ) = 0.
ObviouslyL < |L — w(z)| + |w(x)|, and integrating otB,, 1 we obtain

(38) / |'LU(ZIZ') — L| Z L|Bdo/16| — / w = L|Bd0/16| > 0.
Bag /16

Bay /16

On the other hand, addingw(z, + v), Twi(zr + y), Twi(ar), fory € By, /16(0), we have

/ |w<x>—L\=/ wizo+y)— Ll < I+ I+ I + L,
By /16 By /16(0)
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where

I =/ w(zo + y) — wlze + )],
By /16(0)

I, =/ w(, + ) — weler + ),
B, /16(0)

I = / \wi(zr +y) — wi ()],
B, /16(0)

B, /16(0)

Setg(t) = w(tzo+ (1 — t)zy, +y), theng'(t) = (xg — xx) - Vw(txg + (1 — t)zx + y), and thus

1 1
w(zg+y)—w(zr+y) =g(1)—g(0) = / g'(t)dt = / (xg—xr) - Vw(tog+ (1 —t)a, +y) dt.
0 0
Therefore
1
\w(zo +y) —w(zk +y)| < |xo — 24 / (Vw(tze + (1 —t)zy + y)| dt,
0

and consequently, integrating @y, ,16(0) and using Fubini's theorem we deduce

1
I < |wg— (/ |Vw(tx0+(1—t)mk+y)\dt) dx
) \Jo

By /16(0

1
= |:)30—:)3k|/ (/ |Vw(txo+(1—t)xk+y)|dx> dt
0 B /16(0)

< |:L’0 - xk| ||Vw||L1(BdO/8) =0.

Moreover, due to3.7)

I2§/ |w —wy| — 0 as k — oo.
By /s

Reasoning as we did to bourid we can write

d,
I3 < / [yl Vwg(z, + ty| < —0/ Vwp| =0 as k— oo.
B, /16(0) 8 Jg

do/8

Finally

I4 = \wk(xk) — L‘ dr = |Bd0/16Hwk(xk) — L| — 0 as k — oo.
B, /16(0)

Therefore,de 6(0) |w(zo +y) — L| = 0, which contradicts¥.8) and completes the proof.[]
o/1
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APPENDIX A.

In this Appendix we prove that for any boundary point gf‘adomain, the maximal cap in the
transformed domain is nonempty. This could seem surprisimgesence of highly oscillatory
boundaries. For example, suppose the boundar§ afcludesl’y = {(x,f(x)) : f(x) =
2Psin (1), « € [-0.01,0.01]}, see fig. 3(b). Leth(I';) be the image through the inversion
map into the unit balB, and letl'; be the arc of the boundatyB given byl's = {(z, g(x)) :
g(x) == V1—2% x € [-0.01,0.01]}, see fig. 3(c). At this scale, the oscillations are not
appreciable. We plot i3(d) the derivative of the 'vertical’ distance between theihdaryl',
and the ball, concretely we plgt(z) — ¢'(z) for z € [-0.01,0.01]. We plot in3(e) the second
derivative of the 'vertical’ distance between the boundamg the ball, which ig”(z) — ¢"(x)
forz € [-5-107%5-1071. Let us observe that this second derivative is strictly fpasiand
that f”(0) — ¢”(0) = 1. Consequently, the first derivative is strictly increasiagd therefore the
'vertical’ distancef (z) — g(x) does not oscillate.

Moreover, let us consider the image through the inversiop afdhe straight line; = 1, i.e.
h(z,1) = h({(z,1), z € [-0.01,0.01]}) . In fig. 3(f)-(g) we plot the second coordinate of the
differenceh(I'y) — h(zx, 1). The oscillation phenomena is present here. In 3igh) we plot the
second coordinate of the differened’,) — h(0B). This difference does not oscillate.

In fig. 3(a) we draw the inversion of the boundary into the unit balratnflexion point; more
precisely we seb'; := {(z, f(2)) : f(z) = & + 1, = € [~n/4,7/4]}, which has an inflexion
point atz = 0.

Let i denote the inversion map defined ihJ), and let) = h(€2) denote the image through
the inversion map into the bal}. For anyz, € 99, letn;(x) be the normal inward at, in the

transformed domaif, and letS = 3(7i;(x,)) be its maximal cap, see fig(b).

Lemma Al If Q C jRN is a bounded domain with”? boundary, then for any, € 9, there
exists a maximal cap = > (7;(xo)) non empty.

Proof. For convenience, we assumg= (0,---,0, 1), and B is the unit ball with center at the
origin such thab B N 02 = z,. Let {(/, ¥ (z')); ||z|| < a}, a > 0, denote a parametrization of
0f) in a neighborhood af,. Hence

(A1) »(0) =1, and Vy_19(0) =0"

Let 1(2) stand for the image through the inversion map into the udit laom definition,
h(0Q2 N B(xg)) is given by

b @ e() ,
Sety = h(2',y(2')) for ' € N and withy = (v/, yn). Since
o ' - (') 12 2 1
VR T R e@r W = e
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X 10
Al o
--B
_ --h(r"))
ot 0 0.01 2
(a) (b) (c)
0.01 1.0005
’
%01 . o ° X 10"‘5
(e)
X 10 x10”
N . 5.
N e .
X<
B 0 - 2 o 6 1
x 1077 x107°
() (h)

FIGURE 3. (a) An inflection point at the boundafy; joint with the inversion
h(I"), and the unit circumference; (b) A degenerated critical patthe boundary
['y; (c) 'y joint with its inversion into the unit balli(T'y), and the arc of cir-
cumferencel's; (d) f'(z) — ¢'(z) for z € [—0.01,0.01]; (e) f"(x) — ¢"(x) for
x € [-5-107* 5-1071]; (f) Second coordinate of the differena€l’y) — h(x, 1)
whereh(z, 1) is the image of the straight ling = 1; (g) a zoom of the same
graphic; (h) Second coordinate of the differeih¢€s) — h(I'3).

for 2/ € N, thena’ = —£ - fory € N, wherey’ € N’ ifand only if y/ = ——»% — for
[y +y3 /|2 +4 (")

somex’ € N. Therefore

¥ (Iy’IQyJ,ry2 )
N for o e N,

YN = . 35
/12 y

and
hOQN B(x)) = {(y/,yn) €ERY ' xR F(y,yn) =0, ¥y e N'},
where
y/ 2 y/
A.3 F(y, yy) = 12 — 7 )| - —L—).
(A-3) W)=y |y +w<|y’l2+y?v)] w(ly/l2+y?v)
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Differentiating (A.3) with respect tqy we obtain

0F /12 < y/ )2 2 ( y/ )2
yIr+ Y|l s Yy 55
4 W2+ vk T+ 2+ v

Substituting aty’, yn) = (0’ 1) and taking into account(1)
oF ! Ny ! o :
A <\y’\2y+ y?v) z; 0;/2 <\y !2y+ yzv> dyn (!y’\2y+ y?v)
= 1#0.
Therefore, by the Implicit Function Theorem there exist®pan neighborhood of, Bs(0') C
RY~! and a unique function : B;(0') — R, ¢ € C?*(B;(0')), such thatp(0’) = 1, and
(A.4) F(y',¢(y)=0  forall y € Bs(0).

Differentiating (A.4) with respecttg;, j = 1, --- , N —1, using the chain rule and substituting
at the point(0’, 1), we obtain
oF OF 0o
A.5 0,1)+=—(0,1
(A.5) 8%( ) ayN( )8%

On the other hand, differentiating\(3) with respect ta; and using the chain rule we obtain

or 0 [\, ( y )2_N*gg< y >51< i )
oy, IV =Ny, [‘y‘ ly'? + v} ;3% '+ vk ) Oy \WW P+ /)

Substituting aty’, yn) = (0, 1) and taking into account\(1)

+ YN

dyn

(ylvyN):(Olvl)

(0" =0, for j=1,---N—1.

=2 (ot )%fa¢< ) o () -
27 G N2 202 ) e \ 112 102 T
y; WP rui ) = 0w WP i) Ou \lyP+oX /|
Consequently, byA.5)
(A.6) Vi-19(0) =0
Let us define
: Y ) 9(y) / /
=Y =53 |, andG(y) = ————3. fory € B;s(07).
5) w(ly’luaﬁ(y’)z W)= ly'1> +9(y)? v

By (A.1), g(0') = 1,andG(0') = 1. Moreover,

{(/,yn) eERV' xR yy =G(Y), ¥ € Bs(0')} C h(09) N B(xo),
and

{(/ yn) eRY xR yy <G(Y), ¥ € Bs(0)} C h(2) N B(x).
Let us see that there exists< ¢’ < § such that

U:= {(y,>yN) eERVI xR yy <G(Y), ¥ € Bé’(ol)}>
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is a convex set. To achieve this, we use a characterizatioomviexity in the twice continuously
differentiable case, se€%3 p. 87-88]. The setlU is a convex set if and only iD?G(y') is
negative semidefinite for ajl € B;(0’). In fact, we will prove thatD?G/(0') is negative definite
and by continuity, there exists some> 0 such thatD?G(y’) is negative semidefinite for all
y' € Bg(0). Differentiating

Gy o (L) 0 (y_)
Ay = Oy \[YI*+ o)) oy; \|y'|* +6(y)?*)

2

and
oG _ 09 29() (y; +9959)
dy; WP +aW)? (Y2 +90)?)?
whered; g = g—jj. Substituting at/ = 0/, and taking into account(1) we deduce
(A.7) Vn-19(0) =0, and Vy_,G(0)=0.
Taking second derivatives far=1,--- N — 1, we obtain

o - £ 213 Gt (i)
Oyr0y; — Oy [0y \|Y'[>+o(y)?) ] Oy; \|y'|>+ o(y')?

Ng (|y|2+;b( )2 ) 8;;@/]- (Iy’lzfib(y’)z)’

for j=1,---N—1,

and
ra 09 20;9(y) (yk + ghkg)
oydy; WP+ (W) +e)?)
20u9(y') (y; + 9959) + 29(y") Ok (y; + 9059)
/ N2\ 2
(I +9(y)?)
490 (y; + 9959) (Y + 90k9)
n2\3 ’
(' +9()?)
Whereﬁ,ﬁ = ay ay Substituting at/’ = 0’ and taking into accoun#( 1) we deduce
= 3 o o (o)) ()
8yk8y, — Ay, L0y \|y'|> +0(y)? ) | 0y; \|y'P> + o(y)? e
Substituting ag’ = 0’ and taking into accoun#(7) we deduce
PGy Ori9  29(1)0 (y; + 99i9)
Oyrdy; YW (P + e |,

= 0p;9(0') = 2(66 4 07;9(0")) = =20, — 9¢,;9(0).
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Due to

i ( Yi ) _ 0ij 2y (y; + 00;0)

8yj |y/|2 _|_¢(y/)2 |y/|2+¢(y/)2 (|y/|2+g(y/)2)27

whered;; is the Kronecker's delta, substitutinggt= 0" and taking into account(6) we can
write

0 Yi
(A8) Ay, (Iy’l2 + ¢(y’)2)

Moreover,

o o (o)) = Sy () e ()
Oy L0y \|y'|* + o(y')? = QymOy: \lY' PP +uk ) O \IWI* + i)’

substituting ag/ = 0’ and taking into accounty(8) we can write

— (Sw

y' =0

NC
Iy L9y \|Y'P+0(y)? )] l—e  Ouxdyi "
Let A := (8§j¢(0’))j’k:17mN_l . then
(A.9) (0459(00) 1y ooy = A, and (95,G(07) .,y = —(2Ivo1 + A),

wherely_; is the identity matrix.
From hypothesi®B N 02 = xz,. Therefore the 'vertical’ distance (distance in the coordi-
nate) between() andoB is strictly positive i.e.

(') > /1= |2/]? forall 2/ e N\ 0 with z = (2/,zy) € QN B(zo),
or equivalently
W)+ 2> >1  forall 2/ e N\0O  with == (', 2y) € QN B(x).

SetH (2') := [(z)))* + |«/|? for 2/ € N with z = (2/, zy) € QN B(x,). ThenH(0') = 1 and
from the above inequality, the poiat = 0/ is an strict minimum of the functiof/. Due to @A.1)
every derivative offf evaluated a’ is zero, and necessarily the Hessian matriiomust be
semi positive definite, i.e.

=A + IN—17

(A10) (w00 + vy + 6y
z/=0'

is a semi positive definite matrix. Hence the matrixA + 2/y_4) is negative definite, and
y' = 0/ is a strict maximum of the functio&’. As a consequence, there exist§ a 0 such that
the matrix(&,ﬁjG(y’)) is negative definite for al)/ € By (0’). Consequently, the sét
IS a convex set.

Le us now choose = max{G(y’) | ¥/ € 0By (0")}. Due toy’ = (' is a strict maximum
of the functionG, and thatG(0") = 1, theny < 1. The capi(l_,y)p(—eN) and its reflec-
tion i’(l_y)/Q(—eN) are non empty sets contained/if€2). Hence the maximal cali contains

i(l_wz(—e]\;), which in nonempty, which concludes that the maximal ﬁap a nonempty. [

jk=1,-N—1

jk=1,N—1
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